2022-08-08 04:20:47 +08:00
|
|
|
---
|
|
|
|
jkqtmathtext_cbrt.png
|
2022-08-10 21:20:21 +08:00
|
|
|
$\cbrt{1+\cbrt{1+\cbrt{1+\cbrt{1+\cbrt{1+x}}}}}\ \ \ \ \ \sqrt[3.1415]{x^2+\pi y^2}$
|
2022-08-08 04:20:47 +08:00
|
|
|
---
|
|
|
|
jkqtmathtext_sqrt.png
|
2022-08-10 21:20:21 +08:00
|
|
|
$\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+x}}}}}$
|
2022-08-08 04:20:47 +08:00
|
|
|
---
|
|
|
|
jkqtmathtext_supersub.png
|
|
|
|
$r^{123}r^\frac{1}{2}\ \ \ \ \ r_{123}r_\frac{1}{2}\ \ \ \ \ a_\text{text}^2a_\text{text}^\frac{1}{2}a^\text{text}_\frac{1}{2}$
|
|
|
|
---
|
|
|
|
jkqtmathtext_specialsubsuper.png
|
|
|
|
$\lim\limits_{x\rightarrow\infty}\sum\limits_{n=1}^\infty\prod\limits_{n=1}^\infty\bigvee\limits_{n=1}^\infty\bigcup\limits_{n=1}^\infty$
|
|
|
|
---
|
|
|
|
jkqtmathtext_doc_quadraticeq.png
|
2022-08-10 18:10:43 +08:00
|
|
|
$x_{1/2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$
|
2022-08-08 04:20:47 +08:00
|
|
|
---
|
|
|
|
jkqtmathtext_doc_quadraticeq_boxes.png
|
|
|
|
--showboxes
|
2022-08-10 18:10:43 +08:00
|
|
|
$x_{1/2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$
|
2022-08-08 04:20:47 +08:00
|
|
|
---
|
|
|
|
jkqtmathtext_lsubstack.png
|
|
|
|
{\backslash}lsubstack: $\sum\limits_\lsubstack{0\leq i\leq10\\-5\leq j\leq1000}f_{i,j}$
|
|
|
|
---
|
|
|
|
jkqtmathtext_rsubstack.png
|
|
|
|
{\backslash}rsubstack: $\sum\limits_\rsubstack{0\leq i\leq10\\-5\leq j\leq1000}f_{i,j}$
|
|
|
|
---
|
|
|
|
jkqtmathtext_substack.png
|
|
|
|
{\backslash}substack: $\sum\limits_\substack{0\leq i\leq10\\-5\leq j\leq1000}f_{i,j}$
|
|
|
|
---
|
|
|
|
jkqtmathtext_mathmode_and_textmode.png
|
2022-08-12 18:54:10 +08:00
|
|
|
\begin{matrix}text: & abc123+d/e\\ math: & $abc123+d/e$\end{matrix}
|
2022-08-08 04:20:47 +08:00
|
|
|
---
|
|
|
|
jkqtmathtext_mathoperator_width_factor.png
|
|
|
|
--showboxes
|
2022-08-12 18:54:10 +08:00
|
|
|
\begin{matrix}Math: $a=b$ & text: a=b\\\textcolor{blue}{extra space}&\textcolor{blue}{normal spacing}\end{matrix}
|
|
|
|
---
|
|
|
|
jkqtmathtext_limits.png
|
|
|
|
no specifier: $\sum_{i=0}^\infty k_i^2\ \ \lim_{x\rightarrow0}f(x)\ \ \nabla_{x}f(x)$ \ \ \ \ \ {\backslash}limits: $\sum\limits_{i=0}^\infty k_i^2\ \ \lim\limits_{x\rightarrow0}f(x)\ \ \nabla\limits_{x}f(x)$ \ \ \ \ \ {\backslash}nolimits: $\sum\nolimits_{i=0}^\infty k_i^2\ \ \lim\nolimits_{x\rightarrow0}f(x)\ \ \nabla\nolimits_{x}f(x)$
|