2019-06-12 18:58:47 +08:00
/*
Copyright ( c ) 2008 - 2019 Jan W . Krieger ( < jan @ jkrieger . de > )
last modification : $ LastChangedDate $ ( revision $ Rev $ )
This software is free software : you can redistribute it and / or modify
it under the terms of the GNU Lesser General Public License ( LGPL ) as published by
the Free Software Foundation , either version 2.1 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU Lesser General Public License ( LGPL ) for more details .
You should have received a copy of the GNU Lesser General Public License ( LGPL )
along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
# ifndef JKQTPSTATBASICS_H_INCLUDED
# define JKQTPSTATBASICS_H_INCLUDED
# include <stdint.h>
# include <cmath>
# include <stdlib.h>
# include <string.h>
# include <iostream>
# include <stdio.h>
# include <limits>
# include <vector>
# include <utility>
# include <cfloat>
# include <ostream>
# include <iomanip>
# include <sstream>
# include "jkqtcommon/jkqtp_imexport.h"
# include "jkqtcommon/jkqtplinalgtools.h"
# include "jkqtcommon/jkqtparraytools.h"
# include "jkqtcommon/jkqtpdebuggingtools.h"
/*! \brief calculates the average of a given data range \a first ... \a last
\ ingroup jkqtptools_math_statistics_basic
\ tparam InputIt standard iterator type of \ a first and \ a last .
\ param first iterator pointing to the first item in the dataset to use \ f $ X_1 \ f $
\ param last iterator pointing behind the last item in the dataset to use \ f $ X_N \ f $
\ param [ out ] Noutput optionally returns the number of accumulated valid values in this variable
\ return Average of the data returned between \ a first and \ a last ( excluding invalid doubles ) .
If the given range \ a first . . . \ a last is empty , NAN is returned
This function implements :
\ f [ \ overline { X } = \ frac { 1 } { N } \ cdot \ sum \ limits_ { i = 1 } ^ { N } X_i \ f ]
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
*/
template < class InputIt >
inline double jkqtpstatAverage ( InputIt first , InputIt last , size_t * Noutput = nullptr ) {
double sum = 0 ;
size_t NN = 0 ;
for ( auto it = first ; it ! = last ; + + it ) {
const double v = jkqtp_todouble ( * it ) ;
if ( JKQTPIsOKFloat ( v ) ) {
sum = sum + v ;
NN + + ;
}
}
if ( Noutput ) * Noutput = NN ;
if ( NN < = 0 ) return JKQTP_DOUBLE_NAN ;
else return sum / static_cast < double > ( NN ) ;
}
2019-06-13 16:27:06 +08:00
2019-06-12 18:58:47 +08:00
/*! \brief calculates the weighted average of a given data range \a first ... \a last
\ ingroup jkqtptools_math_statistics_basic
\ tparam InputIt standard iterator type of \ a first and \ a last .
\ tparam InputWeightIt standard iterator type of \ a firstWeight
\ param first iterator pointing to the first item in the dataset to use \ f $ X_1 \ f $
\ param last iterator pointing behind the last item in the dataset to use \ f $ X_N \ f $
\ param firstWeight iterator pointing to the first item in the weights dataset \ f $ w_i \ f $
\ param [ out ] Noutput optionally returns the number of accumulated valid values in this variable
\ return weighted average of the data returned between \ a first and \ a last ( excluding invalid doubles ) .
If the given range \ a first . . . \ a last is empty , NAN is returned
This function implements :
\ f [ \ overline { X } = \ frac { \ sum \ limits_ { i = 1 } ^ { N } w_i \ cdot X_i } { \ sum \ limits_ { i = 1 } ^ { N } w_i } \ f ]
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
*/
template < class InputIt , class InputWeightIt >
inline double jkqtpstatWeightedAverage ( InputIt first , InputIt last , InputWeightIt firstWeight , size_t * Noutput = nullptr ) {
double sum = 0 ;
double sumW = 0 ;
size_t NN = 0 ;
auto itW = firstWeight ;
for ( auto it = first ; it ! = last ; + + it , + + itW ) {
const double v = jkqtp_todouble ( * it ) ;
const double w = jkqtp_todouble ( * itW ) ;
if ( JKQTPIsOKFloat ( v ) ) {
sum = sum + v * w ;
sumW = sumW + w ;
NN + + ;
}
}
if ( Noutput ) * Noutput = NN ;
if ( NN < = 0 ) return JKQTP_DOUBLE_NAN ;
else return sum / sumW ;
}
/*! \brief calculates the number of valid values in the given data range \a first ... \a last
\ ingroup jkqtptools_math_statistics_basic
\ tparam InputIt standard iterator type of \ a first and \ a last .
\ param first iterator pointing to the first item in the dataset to use \ f $ X_1 \ f $
\ param last iterator pointing behind the last item in the dataset to use \ f $ X_N \ f $
\ return number of valid values between \ a first and \ a last ( excluding invalid doubles ) .
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
*/
template < class InputIt >
inline size_t jkqtpstatCount ( InputIt first , InputIt last ) {
double sum = 0 ;
size_t NN = 0 ;
for ( auto it = first ; it ! = last ; + + it ) {
const double v = jkqtp_todouble ( * it ) ;
if ( JKQTPIsOKFloat ( v ) ) {
sum = sum + v ;
NN + + ;
}
}
return NN ;
}
/*! \brief calculates the minimum and maximum values in the given data range \a first ... \a last
\ ingroup jkqtptools_math_statistics_basic
\ tparam InputIt standard iterator type of \ a first and \ a last .
\ param first iterator pointing to the first item in the dataset to use \ f $ X_1 \ f $
\ param last iterator pointing behind the last item in the dataset to use \ f $ X_N \ f $
\ param [ out ] min receives the minimum element value
\ param [ out ] max receives the maximum element value
\ param [ out ] minPos receives the location of the minimum element value
\ param [ out ] maxPos receives the location of the minimum maximum element value
\ param [ out ] Noutput optionally returns the number of accumulated valid values in this variable
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
*/
template < class InputIt >
inline void jkqtpstatMinMax ( InputIt first , InputIt last , double & min , double & max , InputIt * minPos = nullptr , InputIt * maxPos = nullptr , size_t * Noutput = nullptr ) {
size_t NN = 0 ;
bool firstV = true ;
InputIt minp = last ;
InputIt maxp = last ;
for ( auto it = first ; it ! = last ; + + it ) {
const double v = jkqtp_todouble ( * it ) ;
if ( JKQTPIsOKFloat ( v ) ) {
if ( firstV ) {
min = v ;
max = v ;
minp = it ;
maxp = it ;
firstV = false ;
} else {
if ( v < min ) {
min = v ;
minp = it ;
}
if ( v > max ) {
max = v ;
maxp = it ;
}
}
NN + + ;
}
}
if ( NN < = 0 ) {
min = JKQTP_DOUBLE_NAN ;
max = JKQTP_DOUBLE_NAN ;
}
if ( Noutput ) * Noutput = NN ;
if ( minPos ) * minPos = minp ;
if ( maxPos ) * maxPos = maxp ;
}
/*! \brief calculates the minimum value in the given data range \a first ... \a last
\ ingroup jkqtptools_math_statistics_basic
\ tparam InputIt standard iterator type of \ a first and \ a last .
\ param first iterator pointing to the first item in the dataset to use \ f $ X_1 \ f $
\ param last iterator pointing behind the last item in the dataset to use \ f $ X_N \ f $
\ param [ out ] minPos receives the location of the minimum element value
\ param [ out ] Noutput optionally returns the number of accumulated valid values in this variable
\ return the minimum value from the given range
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
*/
template < class InputIt >
inline double jkqtpstatMinimum ( InputIt first , InputIt last , InputIt * minPos = nullptr , size_t * Noutput = nullptr ) {
size_t NN = 0 ;
bool firstV = true ;
InputIt minp = last ;
double min = JKQTP_DOUBLE_NAN ;
for ( auto it = first ; it ! = last ; + + it ) {
const double v = jkqtp_todouble ( * it ) ;
if ( JKQTPIsOKFloat ( v ) ) {
if ( firstV ) {
min = v ;
minp = it ;
firstV = false ;
} else {
if ( v < min ) {
min = v ;
minp = it ;
}
}
NN + + ;
}
}
if ( Noutput ) * Noutput = NN ;
if ( minPos ) * minPos = minp ;
return min ;
}
/*! \brief calculates the maximum value in the given data range \a first ... \a last
\ ingroup jkqtptools_math_statistics_basic
\ tparam InputIt standard iterator type of \ a first and \ a last .
\ param first iterator pointing to the first item in the dataset to use \ f $ X_1 \ f $
\ param last iterator pointing behind the last item in the dataset to use \ f $ X_N \ f $
\ param [ out ] maxPos receives the location of the maximum element value
\ param [ out ] Noutput optionally returns the number of accumulated valid values in this variable
\ return the maximum value from the given range
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
*/
template < class InputIt >
inline double jkqtpstatMaximum ( InputIt first , InputIt last , InputIt * maxPos = nullptr , size_t * Noutput = nullptr ) {
size_t NN = 0 ;
bool firstV = true ;
InputIt maxp = last ;
double max = JKQTP_DOUBLE_NAN ;
for ( auto it = first ; it ! = last ; + + it ) {
const double v = jkqtp_todouble ( * it ) ;
if ( JKQTPIsOKFloat ( v ) ) {
if ( firstV ) {
max = v ;
maxp = it ;
firstV = false ;
} else {
if ( v > max ) {
max = v ;
maxp = it ;
}
}
NN + + ;
}
}
if ( Noutput ) * Noutput = NN ;
if ( maxPos ) * maxPos = maxp ;
return max ;
}
/*! \brief calculates the sum of a given data range \a first ... \a last of values,
modifying each value with a given functor \ a modifierFunctor before accumulating
\ ingroup jkqtptools_math_statistics_basic
\ tparam InputIt standard iterator type of \ a first and \ a last .
\ tparam FF a functor type
\ param first iterator pointing to the first item in the dataset to use \ f $ X_1 \ f $
\ param last iterator pointing behind the last item in the dataset to use \ f $ X_N \ f $
\ param modifierFunctor the function to apply to each element in the range before summation ( of type \ a FF )
\ param [ out ] Noutput optionally returns the number of accumulated valid values in this variable
\ return Sum of modified data returned between \ a first and \ a last ( excluding invalid doubles ) .
If the given range \ a first . . . \ a last is empty , 0 is returned
This function implements :
\ f [ \ sum ( X ) = \ cdot \ sum \ limits_ { i = 1 } ^ { N } \ mbox { modifierFunctor } ( X_i ) \ f ]
This function allows to e . g . calculate the sum of squares by calling
\ code
jkqtpstatModifiedSum ( first , last , [ ] ( double v ) { return v * v ; } ) ;
jkqtpstatModifiedSum ( first , last , & jkqtp_sqr < double > ) ;
\ endcode
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
*/
template < class InputIt , class FF >
inline double jkqtpstatModifiedSum ( InputIt first , InputIt last , FF modifierFunctor , size_t * Noutput = nullptr ) {
double sum = 0 ;
size_t NN = 0 ;
for ( auto it = first ; it ! = last ; + + it ) {
const double v = jkqtp_todouble ( * it ) ;
if ( JKQTPIsOKFloat ( v ) ) {
sum = sum + modifierFunctor ( v ) ;
NN + + ;
}
}
if ( Noutput ) * Noutput = NN ;
if ( NN < = 0 ) return 0 ;
else return sum ;
}
/*! \brief calculates the sum of a given data range \a first ... \a last
\ ingroup jkqtptools_math_statistics_basic
\ tparam InputIt standard iterator type of \ a first and \ a last .
\ param first iterator pointing to the first item in the dataset to use \ f $ X_1 \ f $
\ param last iterator pointing behind the last item in the dataset to use \ f $ X_N \ f $
\ param [ out ] Noutput optionally returns the number of accumulated valid values in this variable
\ return Sum of the data returned between \ a first and \ a last ( excluding invalid doubles ) .
If the given range \ a first . . . \ a last is empty , 0 is returned
This function implements :
\ f [ \ sum ( X ) = \ cdot \ sum \ limits_ { i = 1 } ^ { N } X_i \ f ]
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
*/
template < class InputIt >
inline double jkqtpstatSum ( InputIt first , InputIt last , size_t * Noutput = nullptr ) {
return jkqtpstatSum ( first , last , & jkqtp_identity < double > , Noutput ) ;
}
/*! \brief calculates the sum of squares of a given data range \a first ... \a last
\ ingroup jkqtptools_math_statistics_basic
\ tparam InputIt standard iterator type of \ a first and \ a last .
\ param first iterator pointing to the first item in the dataset to use \ f $ X_1 \ f $
\ param last iterator pointing behind the last item in the dataset to use \ f $ X_N \ f $
\ param [ out ] Noutput optionally returns the number of accumulated valid values in this variable
\ return Sum of squares of the data returned between \ a first and \ a last ( excluding invalid doubles ) .
If the given range \ a first . . . \ a last is empty , 0 is returned
This function implements :
\ f [ \ sum ( X ) = \ cdot \ sum \ limits_ { i = 1 } ^ { N } X_i ^ 2 \ f ]
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
*/
template < class InputIt >
inline double jkqtpstatSumSqr ( InputIt first , InputIt last , size_t * Noutput = nullptr ) {
return jkqtpstatSum ( first , last , & jkqtp_sqr < double > , Noutput ) ;
}
/*! \brief calculates the vector of cummulative (or partial) sums of a given data range \a first ... \a last
\ ingroup jkqtptools_math_statistics_basic
\ tparam InputIt standard iterator type of \ a first and \ a last .
\ tparam OutputIt standard output iterator type
\ param first iterator pointing to the first item in the dataset to use \ f $ X_1 \ f $
\ param last iterator pointing behind the last item in the dataset to use \ f $ X_N \ f $
\ param [ out ] output This iterator is used to store the results , use e . g . a std : : back_inserter
\ return vector of cummulative ( or partial ) sums returned between \ a first and \ a last ( excluding invalid doubles ) .
For invalid values , the last sum is re - inserted , so the returned vector has the same number of entries
as the range \ a first . . . \ a last
This function implements :
\ f [ \ sum ( X ) _j = \ cdot \ sum \ limits_ { i = 1 } ^ { j } X_i \ f ]
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
*/
template < class InputIt , class OutputIt >
inline void jkqtpstatCumSum ( InputIt first , InputIt last , OutputIt output ) {
double sum = 0 ;
for ( auto it = first ; it ! = last ; + + it ) {
const double v = jkqtp_todouble ( * it ) ;
if ( JKQTPIsOKFloat ( v ) ) {
sum = sum + v ;
}
* + + output = sum ;
}
}
/*! \brief filters the given data range \a first ... \a last for good floats (using JKQTPIsOKFloat() )
\ ingroup jkqtptools_math_statistics_basic
\ tparam InputIt standard iterator type of \ a first and \ a last .
\ tparam OutputIt standard output iterator type
\ param first iterator pointing to the first item in the dataset to use \ f $ X_1 \ f $
\ param last iterator pointing behind the last item in the dataset to use \ f $ X_N \ f $
\ param [ out ] output This iterator is used to store the results , use e . g . a std : : back_inserter
\ return number of elementes put into \ a output
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
*/
template < class InputIt , class OutputIt >
inline size_t jkqtpstatFilterGoodFloat ( InputIt first , InputIt last , OutputIt output ) {
size_t NN = 0 ;
for ( auto it = first ; it ! = last ; + + it ) {
const double v = jkqtp_todouble ( * it ) ;
if ( JKQTPIsOKFloat ( v ) ) {
* + + output = v ;
NN + + ;
}
}
return NN ;
}
2019-06-13 18:46:49 +08:00
/*! \brief calculates the variance \f$ \sigma_X^2=\mbox{Var}(X) \f$ of a given data range \a first ... \a last
2019-06-12 18:58:47 +08:00
\ ingroup jkqtptools_math_statistics_basic
\ tparam InputIt standard iterator type of \ a first and \ a last .
\ tparam InputWeightIt standard iterator type of \ a firstWeight
\ param first iterator pointing to the first item in the dataset to use \ f $ X_1 \ f $
\ param last iterator pointing behind the last item in the dataset to use \ f $ X_N \ f $
\ param [ out ] averageOut returns ( optionally ) the average of the dataset
\ param [ out ] Noutput optionally returns the number of accumulated valid values in this variable
\ return Variance of the data returned between \ a first and \ a last ( excluding invalid doubles ) .
If the given range \ a first . . . \ a last is empty , 0 is returned
This function implements :
2019-06-13 18:46:49 +08:00
\ f [ \ sigma_X ^ 2 = \ text { Var } ( X ) = \ frac { 1 } { N - 1 } \ cdot \ sum \ limits_ { i = 1 } ^ { N } ( X_i - \ overline { X } ) ^ 2 = \ frac { 1 } { N - 1 } \ cdot \ left ( \ sum_ { i = 1 } ^ NX_i ^ 2 - \ frac { 1 } { N } \ cdot \ left ( \ sum_ { i = 1 } ^ NX_i \ right ) ^ 2 \ right ) \ f ]
2019-06-12 18:58:47 +08:00
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
*/
template < class InputIt >
inline double jkqtpstatVariance ( InputIt first , InputIt last , double * averageOut = nullptr , size_t * Noutput = nullptr ) {
double sum = 0 ;
double sum2 = 0 ;
size_t NN = 0 ;
for ( auto it = first ; it ! = last ; + + it ) {
const double v = jkqtp_todouble ( * it ) ;
if ( JKQTPIsOKFloat ( v ) ) {
sum = sum + v ;
sum2 = sum2 + v * v ;
NN + + ;
}
}
if ( averageOut ) {
if ( NN < = 0 ) * averageOut = JKQTP_DOUBLE_NAN ;
else * averageOut = sum / static_cast < double > ( NN ) ;
}
if ( Noutput ) * Noutput = NN ;
if ( NN < = 1 ) return 0 ;
else return ( sum2 - sum * sum / static_cast < double > ( NN ) ) / static_cast < double > ( NN - 1 ) ;
}
2019-06-13 18:46:49 +08:00
/*! \brief calculates the standard deviation \f$ \sigma_X=\sqrt{\mbox{Var}(X)} \f$ of a given data range \a first ... \a last
2019-06-12 18:58:47 +08:00
\ ingroup jkqtptools_math_statistics_basic
\ tparam InputIt standard iterator type of \ a first and \ a last .
\ param first iterator pointing to the first item in the dataset to use \ f $ X_1 \ f $
\ param last iterator pointing behind the last item in the dataset to use \ f $ X_N \ f $
\ param [ out ] averageOut returns ( optionally ) the average of the dataset
\ param [ out ] Noutput optionally returns the number of accumulated valid values in this variable
\ return standard deviation of the data returned between \ a first and \ a last ( excluding invalid doubles ) .
If the given range \ a first . . . \ a last is empty , 0 is returned
This function implements :
\ f [ \ sigma_X = \ sqrt { \ frac { 1 } { N - 1 } \ cdot \ sum \ limits_ { i = 1 } ^ { N } ( X_i - \ overline { X } ) ^ 2 } = \ f ]
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
*/
template < class InputIt >
inline double jkqtpstatStdDev ( InputIt first , InputIt last , double * averageOut = nullptr , size_t * Noutput = nullptr ) {
return sqrt ( jkqtpstatVariance ( first , last , averageOut , Noutput ) ) ;
}
2019-06-13 18:46:49 +08:00
/*! \brief calculates the weighted variance \f$ \sigma_X^2=\mbox{Var}(X) \f$ of a given data range \a first ... \a last
2019-06-12 18:58:47 +08:00
\ ingroup jkqtptools_math_statistics_basic
\ tparam InputIt standard iterator type of \ a first and \ a last .
\ tparam InputWeightIt standard iterator type of \ a firstWeight
\ param first iterator pointing to the first item in the dataset to use \ f $ X_1 \ f $
\ param last iterator pointing behind the last item in the dataset to use \ f $ X_N \ f $
\ param firstWeight iterator pointing to the first item in the weights dataset \ f $ w_i \ f $
\ param [ out ] averageOut returns ( optionally ) the average of the dataset
\ param [ out ] Noutput optionally returns the number of accumulated valid values in this variable
\ return weighted standard deviation of the data returned between \ a first and \ a last ( excluding invalid doubles ) .
If the given range \ a first . . . \ a last is empty , 0 is returned
This function implements :
2019-06-13 18:46:49 +08:00
\ f [ \ sigma_v ^ 2 = \ text { Var } ( v ) = \ frac { \ sum \ limits_ { i = 1 } ^ { N } w_i \ cdot ( v_i - \ overline { v } ) ^ 2 } { \ sum \ limits_ { i = 1 } ^ { N } w_i } \ f ]
2019-06-12 18:58:47 +08:00
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
*/
template < class InputIt , class InputWeightIt >
inline double jkqtpstatWeightedVariance ( InputIt first , InputIt last , InputWeightIt firstWeight , double * averageOut = nullptr , size_t * Noutput = nullptr ) {
double avg = jkqtpstatWeightedAverage ( first , last , firstWeight ) ;
double sum2 = 0 ;
double sumW = 0 ;
size_t NN = 0 ;
auto itW = firstWeight ;
for ( auto it = first ; it ! = last ; + + it , + + itW ) {
const double v = jkqtp_todouble ( * it ) - avg ;
const double w = jkqtp_todouble ( * itW ) ;
if ( JKQTPIsOKFloat ( v ) ) {
sum2 = sum2 + v * v * w ;
sumW = sumW + w ;
NN + + ;
}
}
if ( averageOut ) * averageOut = avg ;
if ( Noutput ) * Noutput = NN ;
if ( NN < = 0 ) return 0 ;
else return sum2 / sumW ;
}
2019-06-13 18:46:49 +08:00
/*! \brief calculates the weighted standard deviation \f$ \sigma_X=\sqrt{\mbox{Var}(X)} \f$ of a given data range \a first ... \a last
2019-06-12 18:58:47 +08:00
\ ingroup jkqtptools_math_statistics_basic
\ tparam InputIt standard iterator type of \ a first and \ a last .
\ tparam InputWeightIt standard iterator type of \ a firstWeight
\ param first iterator pointing to the first item in the dataset to use \ f $ X_1 \ f $
\ param last iterator pointing behind the last item in the dataset to use \ f $ X_N \ f $
\ param firstWeight iterator pointing to the first item in the weights dataset \ f $ w_i \ f $
\ param [ out ] averageOut returns ( optionally ) the average of the dataset
\ param [ out ] Noutput optionally returns the number of accumulated valid values in this variable
\ return weighted standard deviation of the data returned between \ a first and \ a last ( excluding invalid doubles ) .
If the given range \ a first . . . \ a last is empty , 0 is returned
This function implements :
\ f [ \ sigma_v = \ sqrt { \ frac { \ sum \ limits_ { i = 1 } ^ { N } w_i \ cdot ( v_i - \ overline { v } ) ^ 2 } { \ sum \ limits_ { i = 1 } ^ { N } w_i } } \ f ]
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
*/
template < class InputIt , class InputWeightIt >
inline double jkqtpstatWeightedStdDev ( InputIt first , InputIt last , InputWeightIt firstWeight , double * averageOut = nullptr , size_t * Noutput = nullptr ) {
return sqrt ( jkqtpstatWeightedVariance ( first , last , firstWeight , averageOut , Noutput ) ) ;
}
2019-06-13 18:46:49 +08:00
/*! \brief calculates the skewness \f$ \gamma_1=\mathbb{E}\left[\left(\frac{X-\mu}{\sigma}\right)^3\right] \f$ of a given data range \a first ... \a last
2019-06-12 18:58:47 +08:00
\ ingroup jkqtptools_math_statistics_basic
\ tparam InputIt standard iterator type of \ a first and \ a last .
\ param first iterator pointing to the first item in the dataset to use \ f $ X_1 \ f $
\ param last iterator pointing behind the last item in the dataset to use \ f $ X_N \ f $
\ param [ out ] averageOut returns ( optionally ) the average of the dataset
\ param [ out ] Noutput optionally returns the number of accumulated valid values in this variable
\ return skewness \ f $ \ gamma_1 \ f $ of the data returned between \ a first and \ a last ( excluding invalid doubles ) .
If the given range \ a first . . . \ a last is empty , 0 is returned
This function implements :
\ f [ \ gamma_1 = \ mathbb { E } \ left [ \ left ( \ frac { X - \ mu } { \ sigma } \ right ) ^ 3 \ right ] = \ frac { m_3 } { m_2 ^ { 3 / 2 } } = \ frac { \ frac { 1 } { n } \ sum_ { i = 1 } ^ n ( x_i - \ overline { x } ) ^ 3 } { \ left ( \ frac { 1 } { n } \ sum_ { i = 1 } ^ n ( x_i - \ overline { x } ) ^ 2 \ right ) ^ { 3 / 2 } } \ f ]
where \ f $ \ mu \ f $ is the mean and \ f $ \ sigma \ f $ the standard deviation of a random variable \ f $ X \ f $ and \ f $ \ overline { x } \ f $ is the average ( calculated using jkqtpstatAverage ( ) ) of
the input dataset \ f $ x_i \ f $ .
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
*/
template < class InputIt >
inline double jkqtpstatSkewness ( InputIt first , InputIt last , double * averageOut = nullptr , size_t * Noutput = nullptr ) {
double avg = jkqtpstatAverage ( first , last ) ;
double sum3 = 0 ;
double sum2 = 0 ;
size_t NN = 0 ;
for ( auto it = first ; it ! = last ; + + it ) {
const double v = jkqtp_todouble ( * it ) - avg ;
if ( JKQTPIsOKFloat ( v ) ) {
sum3 = sum3 + jkqtp_cube ( v ) ;
sum2 = sum2 + jkqtp_sqr ( v ) ;
NN + + ;
}
}
if ( averageOut ) * averageOut = avg ;
if ( Noutput ) * Noutput = NN ;
if ( NN < = 0 ) return 0 ;
const double down = jkqtp_cube ( sum2 / double ( NN ) ) ;
return sum3 / double ( NN ) / sqrt ( down ) ;
}
/*! \brief calculates the given central moment \f$ \langle (X-\mu)^o\rangle \f$ of a given data range \a first ... \a last
\ ingroup jkqtptools_math_statistics_basic
\ tparam InputIt standard iterator type of \ a first and \ a last .
\ param first iterator pointing to the first item in the dataset to use \ f $ X_1 \ f $
\ param last iterator pointing behind the last item in the dataset to use \ f $ X_N \ f $
\ param order oder \ f $ o \ f $ of the central moment \ f $ \ langle ( X - \ mu ) ^ o \ rangle \ f $
\ param [ out ] averageOut returns ( optionally ) the average of the dataset
\ param [ out ] Noutput optionally returns the number of accumulated valid values in this variable
\ return the given central moment \ f $ \ langle ( X - \ mu ) ^ o \ rangle \ f $ of the data returned between \ a first and \ a last ( excluding invalid doubles ) .
If the given range \ a first . . . \ a last is empty , 0 is returned
This function implements :
\ f [ \ langle ( X - \ mu ) ^ o \ rangle = \ mathbb { E } \ left [ \ left ( X - \ mu \ right ) ^ o \ right ] \ f ]
where \ f $ \ mu \ f $ is the mean of a random variable \ f $ X \ f $ and \ f $ \ overline { x } \ f $ is the average ( calculated using jkqtpstatAverage ( ) ) of
the input dataset \ f $ x_i \ f $ .
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
*/
template < class InputIt >
inline double jkqtpstatCentralMoment ( InputIt first , InputIt last , int order , double * averageOut = nullptr , size_t * Noutput = nullptr ) {
double avg = jkqtpstatAverage ( first , last ) ;
double sum = 0 ;
size_t NN = 0 ;
for ( auto it = first ; it ! = last ; + + it ) {
const double v = jkqtp_todouble ( * it ) - avg ;
if ( JKQTPIsOKFloat ( v ) ) {
sum = sum + pow ( v , order ) ;
NN + + ;
}
}
if ( averageOut ) * averageOut = avg ;
if ( Noutput ) * Noutput = NN ;
if ( NN < = 0 ) return 0 ;
return sum / double ( NN ) ;
}
/*! \brief calculates the given (non-central) moment \f$ \langle X^o\rangle \f$ of a given data range \a first ... \a last
\ ingroup jkqtptools_math_statistics_basic
\ tparam InputIt standard iterator type of \ a first and \ a last .
\ param first iterator pointing to the first item in the dataset to use \ f $ X_1 \ f $
\ param last iterator pointing behind the last item in the dataset to use \ f $ X_N \ f $
\ param order oder \ f $ o \ f $ of the central moment \ f $ \ langle X ^ o \ rangle \ f $
\ param [ out ] Noutput optionally returns the number of accumulated valid values in this variable
\ return the given moment \ f $ \ langle X ^ o \ rangle \ f $ of the data returned between \ a first and \ a last ( excluding invalid doubles ) .
If the given range \ a first . . . \ a last is empty , 0 is returned
This function implements :
\ f [ \ langle X ^ n \ rangle = \ mathbb { E } \ left [ X ^ n \ right ] \ f ]
where \ f $ \ mu \ f $ is the mean of a random variable \ f $ X \ f $ and \ f $ \ overline { x } \ f $ is the average ( calculated using jkqtpstatAverage ( ) ) of
the input dataset \ f $ x_i \ f $ .
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
*/
template < class InputIt >
inline double jkqtpstatMoment ( InputIt first , InputIt last , int order , size_t * Noutput = nullptr ) {
double sum = 0 ;
size_t NN = 0 ;
for ( auto it = first ; it ! = last ; + + it ) {
const double v = jkqtp_todouble ( * it ) ;
if ( JKQTPIsOKFloat ( v ) ) {
sum = sum + pow ( v , order ) ;
NN + + ;
}
}
if ( Noutput ) * Noutput = NN ;
if ( NN < = 0 ) return 0 ;
return sum / double ( NN ) ;
}
2019-06-13 18:46:49 +08:00
/*! \brief calculate empirical (Pearson's) correlation coefficient \f$ \rho_{x,y} \f$ between two given data ranges \a first1 ... \a last1 and \a first2 ... \a last2
2019-06-12 18:58:47 +08:00
\ ingroup jkqtptools_math_statistics_basic
\ tparam InputIt1 standard iterator type of \ a first1 and \ a last1 .
\ tparam InputIt2 standard iterator type of \ a first2 and \ a last2 .
\ param first1 iterator pointing to the first item in the first dataset to use \ f $ X_1 \ f $
\ param last1 iterator pointing behind the last item in the first dataset to use \ f $ X_N \ f $
\ param first2 iterator pointing to the second item in the first dataset to use \ f $ Y_1 \ f $
\ param [ out ] averageOut1 returns ( optionally ) the average of the first dataset \ f $ X_i \ f $
\ param [ out ] averageOut2 returns ( optionally ) the average of the second dataset \ f $ Y_i \ f $
\ param [ out ] Noutput optionally returns the number of accumulated valid values in this variable
\ return pearson ' s correlation coefficient
If the given range \ a first1 . . . \ a last1 is empty , JKQTP_DOUBLE_NAN is returned
This function implements :
2019-06-13 18:46:49 +08:00
\ f [ \ rho_ { x , y } = \ text { CorCoeff } _ { \ text { Pearson } } ( x , y ) = \ frac { \ sum \ limits_ { i = 0 } ^ { N - 1 } ( x_i - \ overline { x } ) ( y_i - \ overline { y } ) } { \ sqrt { \ sum \ limits_ { i = 0 } ^ { N - 1 } ( x_i - \ overline { x } ) ^ 2 \ cdot \ sum \ limits_ { i = 0 } ^ { N - 1 } ( y_i - \ overline { y } ) ^ 2 } } \ f ]
2019-06-12 18:58:47 +08:00
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
\ see https : //en.wikipedia.org/wiki/Pearson_correlation_coefficient
*/
template < class InputIt1 , class InputIt2 >
inline double jkqtpstatCorrelationCoefficient ( InputIt1 first1 , InputIt1 last1 , InputIt2 first2 , double * averageOut1 = nullptr , double * averageOut2 = nullptr , size_t * Noutput = nullptr ) {
double xbar = 0 ;
double ybar = 0 ;
size_t NN = 0 ;
auto it2 = first2 ;
for ( auto it = first1 ; it ! = last1 ; + + it , + + it2 ) {
const double xm = jkqtp_todouble ( * it ) ;
const double ym = jkqtp_todouble ( * it2 ) ;
if ( JKQTPIsOKFloat ( xm ) & & JKQTPIsOKFloat ( ym ) ) {
xbar = xbar + xm ;
ybar = ybar + ym ;
NN + + ;
}
}
if ( Noutput ) * Noutput = NN ;
if ( averageOut1 ) {
if ( NN < = 0 ) * averageOut1 = JKQTP_DOUBLE_NAN ;
else * averageOut1 = xbar / static_cast < double > ( NN ) ;
}
if ( averageOut2 ) {
if ( NN < = 0 ) * averageOut2 = JKQTP_DOUBLE_NAN ;
else * averageOut2 = ybar / static_cast < double > ( NN ) ;
}
if ( NN < = 0 ) return JKQTP_DOUBLE_NAN ;
xbar = xbar / NN ;
ybar = ybar / NN ;
double sumxy = 0 ;
double sumx = 0 ;
double sumy = 0 ;
it2 = first2 ;
for ( auto it = first1 ; it ! = last1 ; + + it , + + it2 ) {
const double xm = jkqtp_todouble ( * it ) ;
const double ym = jkqtp_todouble ( * it2 ) ;
if ( JKQTPIsOKFloat ( xm ) & & JKQTPIsOKFloat ( ym ) ) {
sumxy = sumxy + xm * ym ;
sumx = sumx + xm * xm ;
sumy = sumy + ym * ym ;
}
}
return sumxy / sqrt ( sumx * sumy ) ;
}
/*! \brief calculates the median of a given sorted (!) data vector
\ ingroup jkqtptools_math_statistics_basic
\ tparam TVector a type , compatible with std : : vector ( i , e , providing size ( ) , [ ] - element access and iterators )
\ param data a sorted vector with values
\ param [ out ] Noutput optionally returns the number of accumulated valid values in this variable
\ return the median of \ a data
If \ a data is empty , NAN is returned
*/
template < class TVector >
inline double jkqtpstatMedianOfSortedVector ( const TVector & data , size_t * Noutput = nullptr ) {
if ( data . size ( ) < = 0 ) {
if ( Noutput ) * Noutput = 0 ;
return JKQTP_DOUBLE_NAN ;
} else {
if ( Noutput ) * Noutput = data . size ( ) ;
if ( data . size ( ) = = 1 ) return data [ 0 ] ;
else if ( data . size ( ) % 2 = = 0 ) return ( data [ ( data . size ( ) - 1 ) / 2 ] + data [ ( data . size ( ) - 1 ) / 2 + 1 ] ) / 2.0 ;
else return data [ ( data . size ( ) - 1 ) / 2 ] ;
}
}
/*! \brief calculates the Five-Number Statistical Summary (minimum, median, maximum and two user-defined quantiles (as well as derived from these the inter quartile range)) of a sorted vector
\ ingroup jkqtptools_math_statistics_basic
\ tparam TVector a type , compatible with std : : vector ( i , e , providing size ( ) , [ ] - element access and iterators )
\ param data a sorted vector with values
\ param [ out ] minimum optionally returns the minimum value of the array
\ param minimumQuantile specifies a quantile for the return value minimum ( default is 0 for the real minimum , but you could e . g . use 0.05 for the 5 % quantile !
\ param [ out ] median optionally returns the median value of the array
\ param [ out ] maximum optionally returns the maximum value of the array
\ param maximumQuantile specifies a quantile for the return value maximum ( default is 1 for the real maximum , but you could e . g . use 0.95 for the 95 % quantile !
\ param quantile1Spec specifies which quantile to calculate for \ a qantile1 ( range : 0. .1 )
\ param [ out ] quantile1 optionally returns the first quantile of the array ( specified by \ a quantile1Spec )
\ param quantile2Spec specifies which quantile to calculate for \ a qantile2 ( range : 0. .1 )
\ param [ out ] quantile2 optionally returns the second quantile of the array ( specified by \ a quantile2Spec )
\ param [ out ] IQR interquartile range , i . e . the range between \ a quantile1 and \ a quantile2
\ param [ out ] IQRSignificance significance range of the interquartile range , calculated as \ f [ 2 \ cdot \ frac { 1.58 \ cdot \ mbox { IQR } } { \ sqrt { N } } \ f ] \ see https : //en.wikipedia.org/wiki/Box_plot
\ param [ out ] Noutput optionally returns the number of accumulated valid values in this variable
\ note This operation implies an internal copy of the data , as well as sorting it !
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
\ see https : //en.wikipedia.org/wiki/Five-number_summary, jkqtpstatAddVBoxplotAndOutliers, jkqtpstatAddHBoxplotAndOutliers, jkqtpstatAddVBoxplot, jkqtpstatAddHBoxplot, \ref JKQTPlotterBasicJKQTPDatastoreStatistics
*/
template < class TVector >
inline void jkqtpstat5NumberStatisticsOfSortedVector ( const TVector & data , double * minimum = nullptr , double minimumQuantile = 0 , double * median = nullptr , double * maximum = nullptr , double maximumQuantile = 1 , double * quantile1 = nullptr , double quantile1Spec = 0.25 , double * quantile2 = nullptr , double quantile2Spec = 0.75 , double * IQR = nullptr , double * IQRSignificance = nullptr , size_t * Noutput = nullptr ) {
if ( data . size ( ) < = 0 ) {
if ( minimum ) * minimum = JKQTP_DOUBLE_NAN ;
if ( maximum ) * maximum = JKQTP_DOUBLE_NAN ;
if ( median ) * median = JKQTP_DOUBLE_NAN ;
if ( quantile1 ) * quantile1 = JKQTP_DOUBLE_NAN ;
if ( quantile1 ) * quantile1 = JKQTP_DOUBLE_NAN ;
if ( Noutput ) * Noutput = 0 ;
} else {
const double qmin = data [ jkqtp_bounded < size_t > ( 0 , static_cast < size_t > ( minimumQuantile * static_cast < double > ( data . size ( ) - 1 ) ) , data . size ( ) - 1 ) ] ;
const double qmax = data [ jkqtp_bounded < size_t > ( 0 , static_cast < size_t > ( maximumQuantile * static_cast < double > ( data . size ( ) - 1 ) ) , data . size ( ) - 1 ) ] ;
if ( minimum ) * minimum = qmin ;
if ( maximum ) * maximum = qmax ;
if ( median ) {
* median = jkqtpstatMedianOfSortedVector ( data ) ;
}
const double q1 = data [ jkqtp_bounded < size_t > ( 0 , static_cast < size_t > ( quantile1Spec * static_cast < double > ( data . size ( ) - 1 ) ) , data . size ( ) - 1 ) ] ;
const double q2 = data [ jkqtp_bounded < size_t > ( 0 , static_cast < size_t > ( quantile2Spec * static_cast < double > ( data . size ( ) - 1 ) ) , data . size ( ) - 1 ) ] ;
if ( quantile1 ) {
* quantile1 = q1 ;
}
if ( quantile2 ) {
* quantile2 = q2 ;
}
if ( IQR ) {
* IQR = q2 - q1 ;
}
if ( IQRSignificance ) {
* IQRSignificance = 2.0 * ( 1.58 * ( q2 - q1 ) ) / sqrt ( static_cast < double > ( data . size ( ) ) ) ;
}
if ( Noutput ) * Noutput = data . size ( ) ;
}
}
/*! \brief calculates the Five-Number Statistical Summary (minimum, median, maximum and two user-defined quantiles (as well as derived from these the inter quartile range)) of a sorted vector
\ ingroup jkqtptools_math_statistics_basic
\ tparam TVector a type , compatible with std : : vector ( i , e , providing size ( ) , [ ] - element access and iterators )
\ param data a sorted vector with values
\ param outliersout output iterator that receives the outliers , smaller than minimum and larger than maximum
\ param [ out ] minimum optionally returns the minimum value of the array
\ param minimumQuantile specifies a quantile for the return value minimum ( default is 0 for the real minimum , but you could e . g . use 0.05 for the 5 % quantile ! )
\ param [ out ] median optionally returns the median value of the array
\ param [ out ] maximum optionally returns the maximum value of the array
\ param maximumQuantile specifies a quantile for the return value maximum ( default is 1 for the real maximum , but you could e . g . use 0.95 for the 95 % quantile ! )
\ param quantile1Spec specifies which quantile to calculate for \ a qantile1 ( range : 0. .1 )
\ param [ out ] quantile1 optionally returns the first quantile of the array ( specified by \ a quantile1Spec )
\ param quantile2Spec specifies which quantile to calculate for \ a qantile2 ( range : 0. .1 )
\ param [ out ] quantile2 optionally returns the second quantile of the array ( specified by \ a quantile2Spec )
\ param [ out ] IQR interquartile range , i . e . the range between \ a quantile1 and \ a quantile2
\ param [ out ] IQRSignificance significance range of the interquartile range , calculated as \ f [ 2 \ cdot \ frac { 1.58 \ cdot \ mbox { IQR } } { \ sqrt { N } } \ f ] \ see https : //en.wikipedia.org/wiki/Box_plot
\ param [ out ] Noutput optionally returns the number of accumulated valid values in this variable
\ note This operation implies an internal copy of the data , as well as sorting it !
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
\ see https : //en.wikipedia.org/wiki/Five-number_summary, jkqtpstatAddVBoxplotAndOutliers, jkqtpstatAddHBoxplotAndOutliers, jkqtpstatAddVBoxplot, jkqtpstatAddHBoxplot, \ref JKQTPlotterBasicJKQTPDatastoreStatistics
*/
template < class TVector , class OutputIt >
inline void jkqtpstat5NumberStatisticsAndOutliersOfSortedVector ( const TVector & data , OutputIt outliersout , double * minimum = nullptr , double minimumQuantile = 0 , double * median = nullptr , double * maximum = nullptr , double maximumQuantile = 1 , double * quantile1 = nullptr , double quantile1Spec = 0.25 , double * quantile2 = nullptr , double quantile2Spec = 0.75 , double * IQR = nullptr , double * IQRSignificance = nullptr , size_t * Noutput = nullptr ) {
if ( data . size ( ) < = 0 ) {
if ( minimum ) * minimum = JKQTP_DOUBLE_NAN ;
if ( maximum ) * maximum = JKQTP_DOUBLE_NAN ;
if ( median ) * median = JKQTP_DOUBLE_NAN ;
if ( quantile1 ) * quantile1 = JKQTP_DOUBLE_NAN ;
if ( quantile1 ) * quantile1 = JKQTP_DOUBLE_NAN ;
if ( Noutput ) * Noutput = 0 ;
} else {
const double qmin = data [ jkqtp_bounded < size_t > ( 0 , static_cast < size_t > ( minimumQuantile * static_cast < double > ( data . size ( ) - 1 ) ) , data . size ( ) - 1 ) ] ;
const double qmax = data [ jkqtp_bounded < size_t > ( 0 , static_cast < size_t > ( maximumQuantile * static_cast < double > ( data . size ( ) - 1 ) ) , data . size ( ) - 1 ) ] ;
if ( minimum ) * minimum = qmin ;
if ( maximum ) * maximum = qmax ;
for ( auto it = data . begin ( ) ; it ! = data . end ( ) ; + + it ) {
if ( * it < qmin | | * it > qmax ) {
* + + outliersout = * it ;
}
}
if ( median ) {
* median = jkqtpstatMedianOfSortedVector ( data ) ;
}
const double q1 = data [ jkqtp_bounded < size_t > ( 0 , static_cast < size_t > ( quantile1Spec * static_cast < double > ( data . size ( ) - 1 ) ) , data . size ( ) - 1 ) ] ;
const double q2 = data [ jkqtp_bounded < size_t > ( 0 , static_cast < size_t > ( quantile2Spec * static_cast < double > ( data . size ( ) - 1 ) ) , data . size ( ) - 1 ) ] ;
if ( quantile1 ) {
* quantile1 = q1 ;
}
if ( quantile2 ) {
* quantile2 = q2 ;
}
if ( IQR ) {
* IQR = q2 - q1 ;
}
if ( IQRSignificance ) {
* IQRSignificance = 2.0 * ( 1.58 * ( q2 - q1 ) ) / sqrt ( static_cast < double > ( data . size ( ) ) ) ;
}
if ( Noutput ) * Noutput = data . size ( ) ;
}
}
/*! \brief calculates the Five-Number Statistical Summary (minimum, median, maximum and two user-defined quantiles (as well as derived from these the inter quartile range)) of a given data range \a first ... \a last (5-value statistics, e.g. used for boxplots)
\ ingroup jkqtptools_math_statistics_basic
\ tparam InputIt standard iterator type of \ a first and \ a last .
\ param first iterator pointing to the first item in the dataset to use \ f $ X_1 \ f $
\ param last iterator pointing behind the last item in the dataset to use \ f $ X_N \ f $
\ param [ out ] minimum optionally returns the minimum value of the array
\ param minimumQuantile specifies a quantile for the return value minimum ( default is 0 for the real minimum , but you could e . g . use 0.05 for the 5 % quantile !
\ param [ out ] median optionally returns the median value of the array
\ param [ out ] maximum optionally returns the maximum value of the array
\ param maximumQuantile specifies a quantile for the return value maximum ( default is 1 for the real maximum , but you could e . g . use 0.95 for the 95 % quantile !
\ param quantile1Spec specifies which quantile to calculate for \ a qantile1 ( range : 0. .1 )
\ param [ out ] quantile1 optionally returns the first quantile of the array ( specified by \ a quantile1Spec )
\ param quantile2Spec specifies which quantile to calculate for \ a qantile2 ( range : 0. .1 )
\ param [ out ] quantile2 optionally returns the second quantile of the array ( specified by \ a quantile2Spec )
\ param [ out ] IQR interquartile range , i . e . the range between \ a quantile1 and \ a quantile2
\ param [ out ] IQRSignificance significance range of the interquartile range , calculated as \ f [ 2 \ cdot \ frac { 1.58 \ cdot \ mbox { IQR } } { \ sqrt { N } } \ f ] \ see https : //en.wikipedia.org/wiki/Box_plot
\ param [ out ] Noutput optionally returns the number of accumulated valid values in this variable
\ note This operation implies an internal copy of the data , as well as sorting it !
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
\ see https : //en.wikipedia.org/wiki/Five-number_summary, jkqtpstatAddVBoxplotAndOutliers, jkqtpstatAddHBoxplotAndOutliers, jkqtpstatAddVBoxplot, jkqtpstatAddHBoxplot, \ref JKQTPlotterBasicJKQTPDatastoreStatistics
*/
template < class InputIt >
2019-06-19 01:36:54 +08:00
inline void jkqtpstat5NumberStatistics ( InputIt first , InputIt last , double * minimum , double minimumQuantile = 0 , double * median = nullptr , double * maximum = nullptr , double maximumQuantile = 1 , double quantile1Spec = 0.25 , double * quantile1 = nullptr , double quantile2Spec = 0.75 , double * quantile2 = nullptr , double * IQR = nullptr , double * IQRSignificance = nullptr , size_t * Noutput = nullptr ) {
2019-06-12 18:58:47 +08:00
std : : vector < double > dataFiltered ;
jkqtpstatFilterGoodFloat ( first , last , std : : back_inserter ( dataFiltered ) ) ;
std : : sort ( dataFiltered . begin ( ) , dataFiltered . end ( ) ) ;
jkqtpstat5NumberStatisticsOfSortedVector ( dataFiltered , minimum , minimumQuantile , median , maximum , maximumQuantile , quantile1 , quantile1Spec , quantile2 , quantile2Spec , IQR , IQRSignificance , Noutput ) ;
}
/*! \brief calculates the Five-Number Statistical Summary (minimum, median, maximum and two user-defined quantiles (as well as derived from these the inter quartile range)) of a given data range \a first ... \a last (5-value statistics, e.g. used for boxplots)
\ ingroup jkqtptools_math_statistics_basic
\ tparam InputIt standard iterator type of \ a first and \ a last .
\ tparam OutputIt standard output iterator type used for the outliers output \ a outliersout , use e . g . std : : back_inserter
\ param first iterator pointing to the first item in the dataset to use \ f $ X_1 \ f $
\ param last iterator pointing behind the last item in the dataset to use \ f $ X_N \ f $
\ param outliersout output iterator that receives the outliers , smaller than minimum and larger than maximum
\ param [ out ] minimum optionally returns the minimum value of the array
\ param minimumQuantile specifies a quantile for the return value minimum ( default is 0 for the real minimum , but you could e . g . use 0.05 for the 5 % quantile ! )
\ param [ out ] median optionally returns the median value of the array
\ param [ out ] maximum optionally returns the maximum value of the array
\ param maximumQuantile specifies a quantile for the return value maximum ( default is 1 for the real maximum , but you could e . g . use 0.95 for the 95 % quantile ! )
\ param quantile1Spec specifies which quantile to calculate for \ a qantile1 ( range : 0. .1 )
\ param [ out ] quantile1 optionally returns the first quantile of the array ( specified by \ a quantile1Spec )
\ param quantile2Spec specifies which quantile to calculate for \ a qantile2 ( range : 0. .1 )
\ param [ out ] quantile2 optionally returns the second quantile of the array ( specified by \ a quantile2Spec )
\ param [ out ] IQR interquartile range , i . e . the range between \ a quantile1 and \ a quantile2
\ param [ out ] IQRSignificance significance range of the interquartile range , calculated as \ f [ 2 \ cdot \ frac { 1.58 \ cdot \ mbox { IQR } } { \ sqrt { N } } \ f ] \ see https : //en.wikipedia.org/wiki/Box_plot
\ param [ out ] Noutput optionally returns the number of accumulated valid values in this variable
\ note This operation implies an internal copy of the data , as well as sorting it !
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
\ see https : //en.wikipedia.org/wiki/Five-number_summary, jkqtpstatAddVBoxplotAndOutliers, jkqtpstatAddHBoxplotAndOutliers, jkqtpstatAddVBoxplot, jkqtpstatAddHBoxplot, \ref JKQTPlotterBasicJKQTPDatastoreStatistics
*/
template < class InputIt , class OutputIt >
inline void jkqtpstat5NumberStatisticsAndOutliers ( InputIt first , InputIt last , OutputIt outliersout , double * minimum = nullptr , double minimumQuantile = 0 , double * median = nullptr , double * maximum = nullptr , double maximumQuantile = 1 , double * quantile1 = nullptr , double quantile1Spec = 0.25 , double * quantile2 = nullptr , double quantile2Spec = 0.75 , double * IQR = nullptr , double * IQRSignificance = nullptr , size_t * Noutput = nullptr ) {
std : : vector < double > dataFiltered ;
jkqtpstatFilterGoodFloat ( first , last , std : : back_inserter ( dataFiltered ) ) ;
std : : sort ( dataFiltered . begin ( ) , dataFiltered . end ( ) ) ;
jkqtpstat5NumberStatisticsAndOutliersOfSortedVector ( dataFiltered , outliersout , minimum , minimumQuantile , median , maximum , maximumQuantile , quantile1 , quantile1Spec , quantile2 , quantile2Spec , IQR , IQRSignificance , Noutput ) ;
}
/*! \brief represents the Five-Number Statistical Summary (minimum, median, maximum and two user-defined quantiles (as well as derived from these the inter quartile range))
\ ingroup jkqtptools_math_statistics_basic
\ see https : //en.wikipedia.org/wiki/Five-number_summary, jkqtpstat5NumberStatistics()
*/
2019-06-21 04:24:47 +08:00
struct JKQTP_LIB_EXPORT JKQTPStat5NumberStatistics {
2019-06-12 18:58:47 +08:00
JKQTPStat5NumberStatistics ( ) ;
/** \brief minimum value */
double minimum ;
/** \brief specifies a quantile for the return value minimum (default is 0 for the real minimum, but you could e.g. use 0.05 for the 5% quantile!) */
double minimumQuantile ;
/** \brief first quantile value (specified by quantile1Spec) */
double quantile1 ;
/** \brief specifies the first quantile (range: 0..1) */
double quantile1Spec ;
/** \brief median value */
double median ;
/** \brief second quantile value (specified by quantile1Spec) */
double quantile2 ;
/** \brief specifies the second quantile (range: 0..1) */
double quantile2Spec ;
/** \brief maximum value */
double maximum ;
/** \brief specifies a quantile for the return value maximum (default is 1 for the real maximum, but you could e.g. use 0.95 for the 95% quantile!) */
double maximumQuantile ;
/** \brief number of values used to calculate the summary */
size_t N ;
/** \brief the interquarzile range */
double IQR ( ) const ;
/** \brief interquartile range, calculated as \f[ 2\cdot\frac{1.58\cdot \mbox{IQR}}{\sqrt{N}} \f] \see https://en.wikipedia.org/wiki/Box_plot */
double IQRSignificanceEstimate ( ) const ;
/** \brief list with the outlier values < minimum and > maximum */
std : : vector < double > outliers ;
} ;
/*! \brief calculates the Five-Number Statistical Summary (minimum, median, maximum and two user-defined quantiles (as well as derived from these the inter quartile range)) of a given data range \a first ... \a last (5-value statistics, e.g. used for boxplots)
\ ingroup jkqtptools_math_statistics_basic
\ tparam InputIt standard iterator type of \ a first and \ a last .
\ param first iterator pointing to the first item in the dataset to use \ f $ X_1 \ f $
\ param last iterator pointing behind the last item in the dataset to use \ f $ X_N \ f $
\ param quantile1Spec specifies which quantile to calculate for \ a qantile1 ( range : 0. .1 )
\ param quantile2Spec specifies which quantile to calculate for \ a qantile2 ( range : 0. .1 )
\ param minimumQuantile specifies a quantile for the return value minimum ( default is 0 for the real minimum , but you could e . g . use 0.05 for the 5 % quantile ! )
\ param maximumQuantile specifies a quantile for the return value maximum ( default is 1 for the real maximum , but you could e . g . use 0.95 for the 95 % quantile ! )
\ return the Five - Number Statistical Summary in a JKQTPStat5NumberStatistics
\ note This operation implies an internal copy of the data , as well as sorting it !
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
\ see https : //en.wikipedia.org/wiki/Five-number_summary, jkqtpstatAddVBoxplotAndOutliers, jkqtpstatAddHBoxplotAndOutliers, jkqtpstatAddVBoxplot, jkqtpstatAddHBoxplot, \ref JKQTPlotterBasicJKQTPDatastoreStatistics
*/
template < class InputIt >
inline JKQTPStat5NumberStatistics jkqtpstat5NumberStatistics ( InputIt first , InputIt last , double quantile1Spec = 0.25 , double quantile2Spec = 0.75 , double minimumQuantile = 0 , double maximumQuantile = 1.0 ) {
JKQTPStat5NumberStatistics res ;
jkqtpstat5NumberStatisticsAndOutliers ( first , last , std : : back_inserter ( res . outliers ) , & ( res . minimum ) , minimumQuantile , & ( res . median ) , & ( res . maximum ) , maximumQuantile , & ( res . quantile1 ) , quantile1Spec , & ( res . quantile2 ) , quantile2Spec , nullptr , nullptr , & ( res . N ) ) ;
return res ;
}
/*! \brief calculates the median of a given data range \a first ... \a last
\ ingroup jkqtptools_math_statistics_basic
\ tparam InputIt standard iterator type of \ a first and \ a last .
\ param first iterator pointing to the first item in the dataset to use \ f $ X_1 \ f $
\ param last iterator pointing behind the last item in the dataset to use \ f $ X_N \ f $
\ param [ out ] Noutput optionally returns the number of accumulated valid values in this variable
\ return the median of the data returned between \ a first and \ a last ( excluding invalid doubles ) .
If the given range \ a first . . . \ a last is empty , NAN is returned
\ note This operation implies an internal copy of the data , as well as sorting it !
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
*/
template < class InputIt >
inline double jkqtpstatMedian ( InputIt first , InputIt last , size_t * Noutput = nullptr ) {
std : : vector < double > dataFiltered ;
jkqtpstatFilterGoodFloat ( first , last , std : : back_inserter ( dataFiltered ) ) ;
std : : sort ( dataFiltered . begin ( ) , dataFiltered . end ( ) ) ;
return jkqtpstatMedianOfSortedVector ( dataFiltered , Noutput ) ;
}
/*! \brief calculates the \a quantile -th quantile of a given data range \a first ... \a last
\ ingroup jkqtptools_math_statistics_basic
\ tparam InputIt standard iterator type of \ a first and \ a last .
\ param first iterator pointing to the first item in the dataset to use \ f $ X_1 \ f $
\ param last iterator pointing behind the last item in the dataset to use \ f $ X_N \ f $
\ param quantile the given quantile , range 0. .1 ( e . g . 0.25 for the 25 % quartile . . . )
\ param [ out ] Noutput optionally returns the number of accumulated valid values in this variable
\ return the \ a quantile - th quantile of the data returned between \ a first and \ a last ( excluding invalid doubles ) .
If the given range \ a first . . . \ a last is empty , NAN is returned
\ note This operation implies an internal copy of the data , as well as sorting it !
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
*/
template < class InputIt >
inline double jkqtpstatQuantile ( InputIt first , InputIt last , double quantile , size_t * Noutput = nullptr ) {
std : : vector < double > dataFiltered ;
jkqtpstatFilterGoodFloat ( first , last , std : : back_inserter ( dataFiltered ) ) ;
std : : sort ( dataFiltered . begin ( ) , dataFiltered . end ( ) ) ;
if ( dataFiltered . size ( ) < = 0 ) {
if ( Noutput ) * Noutput = 0 ;
return JKQTP_DOUBLE_NAN ;
} else {
if ( Noutput ) * Noutput = dataFiltered . size ( ) ;
return dataFiltered [ jkqtp_bounded < size_t > ( 0 , static_cast < size_t > ( quantile * static_cast < double > ( dataFiltered . size ( ) - 1 ) ) , dataFiltered . size ( ) - 1 ) ] ;
}
}
/*! \brief calculates the median absolute deviation about the median (MAD) of a given data range \a first ... \a last
\ ingroup jkqtptools_math_statistics_basic
\ tparam InputIt standard iterator type of \ a first and \ a last .
\ param first iterator pointing to the first item in the dataset to use \ f $ X_1 \ f $
\ param last iterator pointing behind the last item in the dataset to use \ f $ X_N \ f $
\ param [ out ] median optionally returns the median value in this variable
\ param [ out ] Noutput optionally returns the number of accumulated valid values in this variable
\ return the median absolute deviation about the median ( MAD ) of the data returned between \ a first and \ a last ( excluding invalid doubles ) .
If the given range \ a first . . . \ a last is empty , NAN is returned
This function calculates
\ f [ \ mbox { MAD } ( \ vec { x } ) = \ mbox { Med } \ left \ { | \ vec { x } - \ mbox { Med } ( \ vec { x } ) | \ right \ } \ f ]
\ note This operation implies an internal copy of the data , as well as sorting it !
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
\ see https : //en.wikipedia.org/wiki/Median_absolute_deviation and Ricardo A. Maronna, R. Douglas Martin, Victor J. Yohai: "Robust Statistics: Theory and Methods", Wiley, 2006, ISBN: 978-0-470-01092-1
*/
template < class InputIt >
inline double jkqtpstatMAD ( InputIt first , InputIt last , double * median = nullptr , size_t * Noutput = nullptr ) {
std : : vector < double > dataFiltered ;
jkqtpstatFilterGoodFloat ( first , last , std : : back_inserter ( dataFiltered ) ) ;
std : : sort ( dataFiltered . begin ( ) , dataFiltered . end ( ) ) ;
if ( dataFiltered . size ( ) < = 0 ) {
if ( Noutput ) * Noutput = 0 ;
if ( median ) * median = JKQTP_DOUBLE_NAN ;
return JKQTP_DOUBLE_NAN ;
} else {
if ( Noutput ) * Noutput = dataFiltered . size ( ) ;
double med = jkqtpstatMedianOfSortedVector ( dataFiltered ) ;
if ( median ) * median = med ;
for ( double & v : dataFiltered ) {
v = fabs ( v - med ) ;
}
std : : sort ( dataFiltered . begin ( ) , dataFiltered . end ( ) ) ;
return jkqtpstatMedianOfSortedVector ( dataFiltered ) ;
}
}
/*! \brief calculates the normalized median absolute deviation about the median (NMAD) of a given data range \a first ... \a last
\ ingroup jkqtptools_math_statistics_basic
\ tparam InputIt standard iterator type of \ a first and \ a last .
\ param first iterator pointing to the first item in the dataset to use \ f $ X_1 \ f $
\ param last iterator pointing behind the last item in the dataset to use \ f $ X_N \ f $
\ param [ out ] median optionally returns the median value in this variable
\ param [ out ] Noutput optionally returns the number of accumulated valid values in this variable
\ return the normalized median absolute deviation about the median ( NMAD ) of the data returned between \ a first and \ a last ( excluding invalid doubles ) .
If the given range \ a first . . . \ a last is empty , NAN is returned
This function calculates
\ f [ \ mbox { NMAD } ( \ vec { x } ) = \ frac { \ mbox { MAD } ( \ vec { x } ) } { 0.6745 } = \ frac { \ mbox { Med } \ left \ { | \ vec { x } - \ mbox { Med } ( \ vec { x } ) | \ right \ } } { 0.6745 } \ f ]
\ note This operation implies an internal copy of the data , as well as sorting it !
\ note Each value is the specified range is converted to a double using jkqtp_todouble ( ) .
Entries in the range that are invalid double ( using JKQTPIsOKFloat ( ) )
are ignored when calculating .
\ see https : //en.wikipedia.org/wiki/Median_absolute_deviation and Ricardo A. Maronna, R. Douglas Martin, Victor J. Yohai: "Robust Statistics: Theory and Methods", Wiley, 2006, ISBN: 978-0-470-01092-1
*/
template < class InputIt >
inline double jkqtpstatNMAD ( InputIt first , InputIt last , double * median = nullptr , size_t * Noutput = nullptr ) {
return jkqtpstatMAD ( first , last , median , Noutput ) / 0.6745 ;
}
# endif // JKQTPSTATBASICS_H_INCLUDED